

Overview of presentation

- Overview of TMDL Development
- Basis for Impairment
- Impairment Sources
- Introduction to Modeling
- Next Steps

TMDL Development

- Watershed and Source Characterization estimate bacteria loads in the watershed through GIS calculations, personal contacts, and professional opinions,
- Modeling determine the contribution of each load to the stream
- Allocation determine how much bacteria from various sources can enter the stream without causing water quality violations

How can you help?

- The slides to follow describe the sources of bacteria in the Lick Creek watershed
- Your input on all the populations presented will help us improve our watershed model

Quick Watershed Overview

- Impaired Segments
- Location
- Land use

Lick Creek Impaired Streams

Some Basic Information

- Lick Creek is located primarily in Russell County, but extends a little into Wise and Dickenson Counties
- Lick Creek contains the towns of Dante, Sun, Gravel Lick, Hamlin, West Dante, and part of Morefield and is roughly centered on State Route 63
- Lick Creek discharges to the Clinch River at St. Paul

Some more basic information

Biological Systems Engineering Center for and Watershed Studies

And yet more basic information

- Watershed area: approx. 17,500 acres
- Land use breakdown:
 - 85% forest
 - 6% agriculture
 - 8% residential/ industrial
 - 1% extractive

DMLR Permits

- Any station that exceeds the following concentrations in more than 10% of its samples is in violation of bacteria water quality standards:
 - Fecal Coliform: 400 cfu/100 mL
 - E. coli: 235 cfu/100 mL
 - (cfu = colony forming units)

Date of Collection

Fecal coliform data for station 1BLCC000.09

All E. coli data for Lick Creek water quality stations

Causes of Impairment

Any source of bacteria to the stream

Estimating Livestock Sources

- Beef: personnel from Virginia Cooperative Extension and the Natural Resources Conservation Service contacted local producers to obtain stocking densities
- Other livestock (pigs, horses, goats...): windshield survey and information from the technical advisory committee meeting

Estimating Wildlife Sources

- Land use
- Recommendations from VDGIF, scientific literature, and previous TMDLs regarding wildlife habitat and population densities
- Wildlife habitats and population densities have been examined by local VDGIF personnel

Initial Estimates of Wildlife Population

Deer	412
Raccoon	748
Muskrat	23
Beaver	103
Waterfowl	0
Wild Turkey	119

Estimating Residential Sources

- Humans: house locations from USGS 7.5-minute quadrangles and population densities from the 2000 Census
- Failing septic systems, direct discharges, and sewer connections estimated from local expertise
- Pets: one pet per household
- Sewer Overflows

Initial Estimates of Human and Pet Populations

Houses	On sewer line	326
	With properly functioning septic system	447
	With failing septic system	188
	With straight pipe discharge	102
Humans		2,593
Pets		1,063

Representing changes over time

- Sewage treatment plant was installed in 1997; prior to that time, almost all houses discharged sewage via a straight pipe directly to the stream
- Since 1997, houses have gradually been added to the sewer system, with a total of 78% of houses now connected to the sewer system
- The Health Department has also been upgrading septic systems and fixing straight pipes over the years

Introduction to Modeling

What is a watershed simulation model?

Biological Systems
Engineering
Contentor
and Waterand Stude

- It is NOT:
 - A fashion model
 - A physical, constructed model
 - A statistical model

What is a watershed simulation model?

- It is:
 - A computer program
 - A series of equations designed to represent physical processes in a watershed

Model Process

<u>INPUT</u>

- · Soils
- Weather
- · Land Use
- · Bacteria Sources

MODEL

<u>OUTPUT</u>

- Runoff
- · Bacteria load

TMDL Calculation

- TMDL = WLA + LA + MOS
- WLA = waste load allocation = permitted point sources
- LA = load allocation = nonpoint sources, determined through modeling
- MOS = margin of safety, implicit for bacteria TMDLs

But Allocation is more...

- Multiple scenarios to meet the water quality standards
- Breakdown of different source contributions to the stream
- Estimate of reductions required from implementation of BMPs
- All calculated using the watershed model

Next Steps

Contact Information

Becky Zeckoski
 Seitz Hall (0303)
 Virginia Tech
 Blacksburg, VA 24061

beckyz@vt.edu 540-231-9058

